LabVIEW Lecture 1

Ertugrul Karademir

What is LabVIEW?

- Graphical programming environment
- Measurement, testing, control applications
- Hardware control
- Flowchart representation
- Object Oriented Approach

What is LabVIEW?

Ertugrul Bİlkent F44G44444 LabVIEW Professional Development System

ni.com/labview

Copyright (c) 2007 National Instruments. All rights reserved.

Version 8.5 - Initializing plug-ins

What is LabVIEW?

Virtual Instrument

- LabVIEW programming paradigm
 - 1. Program control with a front panel
 - 2. Algorithm with block diagram

- Easy to debug
- Hard to program

Front Panel

Block Diagram

Front Panel – Block Diagram

To toggle between two panels

Context Help

Detailed help

Three fashions of variables

- Mixture of GUI and console
- 1. Controls
 - User input (In Java: TextBox GUI Component)
- 2. Indicators
 - Program output (In Java: Label GUI Component)
- 3. Constants
 - Predefined constants (In Java: Class variables with const definer)

Controls

- Selected from Controls Palette
- Usually Express Palette is enough

Controls

Controls

- Each control has a proxy in the Block diagram
- Note that proxy has only OUTPUT node

Indicators

- Also Selected from Controls Palette
- Usually Express Palette is enough

Indicators

Indicators

- Each indicator also has a proxy in the Block diagram
- Note that proxy has only INPUT node

Constants

Search S.... View* ▼ Programming

Structures

Q. Report Gener... ▶ Measurement I/O ▶ Instrument I/O Vision and Motion ▶ Mathematics ▶ Signal Processing ▶ Data Communication ▶ Connectivity

▶ Control Design & Simulation

▶ SignalExpress **▼** Express - N

B 12 C 3 4

Array 123

Numeric □F Þ $\overline{\Lambda}$

Boolean

D 1

1

 You can use functions palette to insert constants

Constants

Constants only live in Block diagram

Search

- You can always seach for the item
- Click on the search button on the palettes

Types

- All standard types are present
 - Integer (signed, unsigned, long, word, byte, quad)
 - Floating point (single precision, double precision, extended precision)
 - Boolean
 - String
- All of above can be arranged in arrays, matrices, clusters

Flow Chart Paradigm

 Flow of execution is done by following nodes in a flow diagram

Wiring

• Defines the direction of flow

Wiring

- One to many connection is acceptable
- Many to one connection is illegal

Wiring

- Application of algorithm is done by wiring
- Color of the wire indicates type

• Blue: Integer , Orange: Floating Point

• Purple: String, Green: Boolean

Red dot indicates that "wrong type has wired but it's OK, he has made the type-casting".

Algorithm Construction

All algoritm structures lies in Programming Sub-Palette

Algorithm Construction

Program flow structures are under Structures Sub-sub-palette

Program Control

Debugging

Debugging

Program Flow Control

- For loops
- While loops
- Sequences
 - Flat sequence
 - Stacked sequence
- And many more
- Compansates for: Event handling, Top-tobottom execution, OOP, etc.

For loop

- Loop for limited iterations
- Must know the iteration amount before-hand
- Loop count can-not be change once set

For loop

Another way to create variables: Right clicking onto the node

- Get some number from the user
- Add 3 to it 10 times
- Display the result

Shift registers convey result of one iteration to the next iteration

Do not limit your imagination

User only interacts with three objects

While loop

- Loops until the loop condition is satisfied
- •Or while the loop condition is not satisfied
 - Select by clicking on the loop condition

Loop Condition

While loop example

While loop example

Employ boolean and comparison palette controls to manage loop condition

While loop example

Flat sequence

Executes contents of each frame one by one

Flat sequence

Flat sequence

